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Origins of Heisenberg Categories
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1 Origins of Heisenberg Categories
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Origins of Heisenberg Categories

Categorification

Mathematicians do not study objects, but relations between objects.
Henri Poincaré
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Origins of Heisenberg Categories

Heisenberg Algebra

Heisenberg algebra

h is the unital associative algebra generated by p, q with relation

[q, p] = qp − pq = 1.

Multiplication by t and differentiation
d

dt
on k[t]:

d

dt
t − t

d

dt
= 1

Induction and restriction on symmetric group Sk representations:

Reskk+1 Indk+1
k − Indk

k−1 Resk−1
k = Id
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Origins of Heisenberg Categories

The missing piece: Heisenberg Category

h Sym = k[t1, t2, t3, . . . ]

via ti and
d

dti

⊕
k

Sk −mod

K0via
Ind

and
Re
s

Heisenberg Category?

K0

Categorical Action

H (’10, Khovanov)
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Origins of Heisenberg Categories

Heisenberg Category

(h,+,×, 1) (H,⊕,⊗, 1)

Generators: p, q Objects: P,Q

Relations: qp = pq + 1 QP ' PQ ⊕ 1

Morphisms?

Morphisms of H are generated by compositions of:

P

P

Q

Q P P

P P
PQ

1

QP

1 QP

1

PQ

1

Can Ozan OĞUZ Shifted Symmetric Functions from Heisenberg Categories 6 / 18



Origins of Heisenberg Categories

Heisenberg Category

(h,+,×, 1) (H,⊕,⊗, 1)

Generators: p, q Objects: P,Q

Relations: qp = pq + 1 QP ' PQ ⊕ 1

Morphisms?

Morphisms of H are generated by compositions of:

P

P

Q

Q P P

P P
PQ

1

QP

1 QP

1

PQ

1
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Can Ozan OĞUZ Shifted Symmetric Functions from Heisenberg Categories 6 / 18



Origins of Heisenberg Categories

Heisenberg Category

(h,+,×, 1) (H,⊕,⊗, 1)

Generators: p, q Objects: P,Q

Relations: qp = pq + 1 QP ' PQ ⊕ 1

Morphisms?

Morphisms of H are generated by compositions of:

P

P

Q

Q P P

P P
PQ

1

QP

1 QP

1

PQ

1
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Origins of Heisenberg Categories

Morphism relations

The generating morphisms satisfy some relations, such as:

=

=

= = −

= = = 1
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Center of H
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1 Origins of Heisenberg Categories
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Center of H

Categorical action of H

H
⊕
k≥n

(Sk ,Sn)-modFn

P Indn+1
n (M) ' Sn+1 ⊗n M

Q Resn−1
n (M) 'n−1 Sn ⊗n M

Bimodule map Sn+1 7→ Sn+1

Bimodule map Sn+2 7→ Sn+2

Multiplication by JM element

Can Ozan OĞUZ Shifted Symmetric Functions from Heisenberg Categories 11 / 18



Center of H

Categorical action of H

H
⊕
k≥n

(Sk ,Sn)-modFn

P Indn+1
n (M) ' Sn+1 ⊗n M

Q Resn−1
n (M) 'n−1 Sn ⊗n M

Bimodule map Sn+1 7→ Sn+1

Bimodule map Sn+2 7→ Sn+2

Multiplication by JM element
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Center of H

Categorical action of H

H
⊕
k≥n

(Sk ,Sn)-modFn

Bimodule map Sn 7→ Sn

(Multiplication by a central element)

Central element in C[Sn]

Fn(EndH(1)) 7−→ Z (C[Sn])

Question:These closed diagrams correspond to which central elements?
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Can Ozan OĞUZ Shifted Symmetric Functions from Heisenberg Categories 12 / 18



Center of H

Categorical action of H

H
⊕
k≥n

(Sk ,Sn)-modFn

Bimodule map Sn 7→ Sn

(Multiplication by a central element)

Central element in C[Sn]

Fn(EndH(1)) 7−→ Z (C[Sn])

Question:These closed diagrams correspond to which central elements?
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Center of H

Categorical center as symmetric functions

Indexed by partitions

Note that closure of a permutation only depends on the cycle type of the
permutation. So these diagrams are indexed by partitions.

There are two natural candidates for central elements indexed by
partitions:

Conjugacy class sums Cλ Central idempotents eµ

Power sum functions pλ Schur functions sµ

Question

How do we multiply these diagrams?
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Center of H

Multiplication of closed diagrams

α(5,1)

?

α(5)

+ l. o. t.

α(1)

p(5,1) = p(5)p(1) + lower order terms

where {pk} is a non-homogeneous basis of Sym = k[p1, p2, . . . ].

a
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Center of H

Center of Htw

Theorem (’16, Kvigne, Licata, Mitchell)

There is an algebra isomorphism

EndH(1) ' Sym∗ = k[p1, p2, . . . ]

αk···k = 7→ pk
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Center of H

Center of Htw

Theorem (’17, Kvigne, O., Reeks)

There is an algebra isomorphism

EndHtw (1) ' Γ = k[p1, p3, . . . ]

α2k+1···2k + 1 = 7→ p2k+1
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Center of H
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