Shifted Symmetric Functions from Heisenberg Categories

Can Ozan OĞUZ

University of Southern California

July 26, 2018

joint work with Michael REEKS, Henry KVINGE

Can Ozan OĞUZ

Shifted Symmetric Functions from Heisenberg Categories 1 / 18

Outline

Origins of Heisenberg Categories

Categorification

Mathematicians do not study objects, but relations between objects. Henri Poincaré

Heisenberg Algebra

Heisenberg algebra

 \mathfrak{h} is the unital associative algebra generated by p, q with relation

$$[q,p] = qp - pq = 1.$$

Heisenberg Algebra

Heisenberg algebra

 \mathfrak{h} is the unital associative algebra generated by p,q with relation

$$[q,p]=qp-pq=1.$$

• Multiplication by t and differentiation $\frac{d}{dt}$ on $\mathbb{k}[t]$:

$$\frac{d}{dt}t - t\frac{d}{dt} = 1$$

Heisenberg Algebra

Heisenberg algebra

 \mathfrak{h} is the unital associative algebra generated by p,q with relation

$$[q,p]=qp-pq=1.$$

• Multiplication by t and differentiation $\frac{d}{dt}$ on $\mathbb{k}[t]$:

$$\frac{d}{dt}t - t\frac{d}{dt} = 1$$

• Induction and restriction on symmetric group S_k representations:

$$\operatorname{Res}_{k+1}^{k}\operatorname{Ind}_{k}^{k+1}-\operatorname{Ind}_{k-1}^{k}\operatorname{Res}_{k}^{k-1}=\operatorname{Id}$$

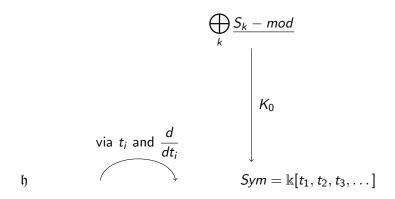
h

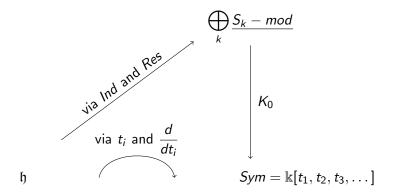
h

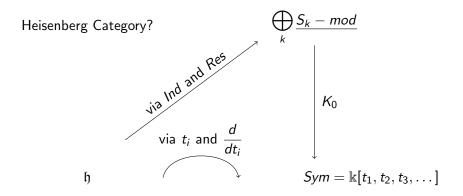
$$Sym = \Bbbk[t_1, t_2, t_3, \dots]$$

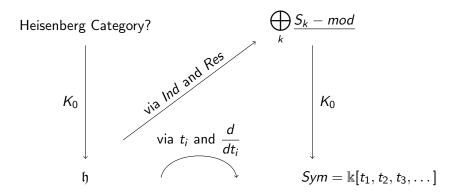
$$Sym = \Bbbk[t_1, t_2, t_3, \dots]$$

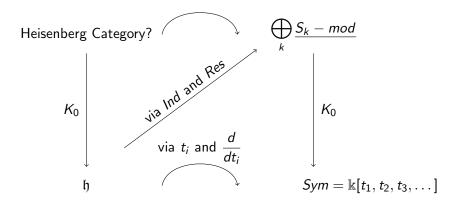
$$\mathfrak{h}$$
 via t_i and $\frac{d}{dt_i}$
 \mathfrak{h} $Sym = \Bbbk[t_1, t_2, t_3, \dots$

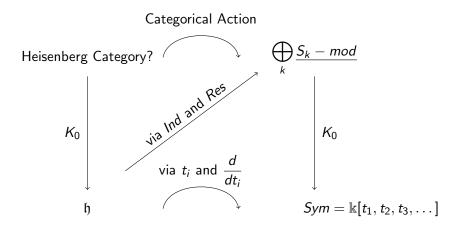


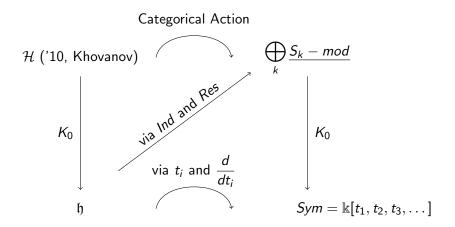












$$(\mathfrak{h},+, imes,1)$$
 \longrightarrow $(\mathcal{H},\oplus,\otimes,\mathbb{1})$

$$(\mathfrak{h},+, imes,1)$$
 \longrightarrow $(\mathcal{H},\oplus,\otimes,\mathbb{1})$

<u>Generators:</u> *p*, *q*

$$(\mathfrak{h},+, imes,1)$$
 \longrightarrow $(\mathcal{H},\oplus,\otimes,\mathbb{1})$

<u>Generators:</u> p, q

Objects: P, Q

$$(\mathfrak{h},+, imes,1)$$
 \longrightarrow $(\mathcal{H},\oplus,\otimes,\mathbb{1})$

Generators: P, Q Objects: P, Q

<u>Relations:</u> qp = pq + 1

$(\mathfrak{h},+, imes,1)$ ————		$\longrightarrow (\mathcal{H},\oplus,\otimes,\mathbb{1})$
Generators:	p,q	Objects: P, Q
Relations:	q p = p q + 1	$\mathit{QP}\simeq \mathit{PQ}\oplus\mathbb{1}$

	$(\mathfrak{h},+, imes,1)$ –	$\longrightarrow (\mathcal{H},\oplus,\otimes,\mathbb{1})$
<u>Generators:</u>	p,q	Objects: P, Q
Relations:	qp = pq + 1	$\mathit{QP}\simeq \mathit{PQ}\oplus\mathbb{1}$

Morphisms?

$(\mathfrak{h},+, imes,1)$	$\longrightarrow (\mathcal{H},\oplus,\otimes,\mathbb{1})$
Generators: <i>p</i> , <i>q</i>	Objects: P, Q
<u>Relations:</u> $qp = pq$	+1 $QP \simeq PQ \oplus \mathbb{1}$

Morphisms?

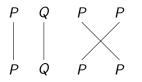
Morphisms of $\ensuremath{\mathcal{H}}$ are generated by compositions of:

P Q | | P Q

 $\begin{array}{ccc} (\mathfrak{h},+,\times,1) & \longrightarrow & (\mathcal{H},\oplus,\otimes,\mathbb{1}) \\ \hline \underline{\text{Generators:}} & p,q & & \text{Objects: } P,Q \\ \hline \underline{\text{Relations:}} & qp = pq+1 & & & QP \simeq PQ \oplus \mathbb{1} \end{array}$

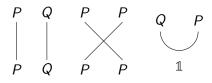
Morphisms?

Morphisms of \mathcal{H} are generated by compositions of:



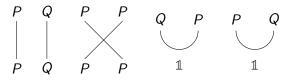
	$(\mathfrak{h},+, imes,1)$		\rightarrow ($\mathcal{H}, \oplus, \otimes, \mathbb{1}$)
<u>Generators:</u>	p,q		Objects: P, Q
Relations:	qp = pq +	1	$QP \simeq PQ \oplus \mathbb{1}$

Morphisms?



($\mathfrak{h},+, imes,1)$		$\rightarrow (\mathcal{H}, \oplus, \otimes, \mathbb{1})$
<u>Generators:</u>	p,q		Objects: P, Q
Relations:	qp = pq +	1	$QP \simeq PQ \oplus \mathbb{1}$

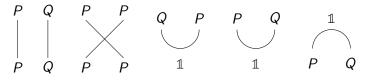
Morphisms?



 $\begin{array}{ccc} (\mathfrak{h},+,\times,1) & \longrightarrow & (\mathcal{H},\oplus,\otimes,\mathbb{1}) \\ \\ \underline{\text{Generators:}} & p,q & & \text{Objects: } P,Q \\ \\ \underline{\text{Relations:}} & qp = pq+1 & & & QP \simeq PQ \oplus \mathbb{1} \end{array}$

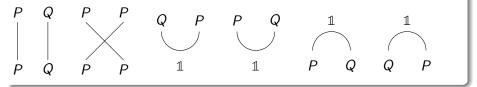
Morphisms?

Morphisms of ${\mathcal H}$ are generated by compositions of:



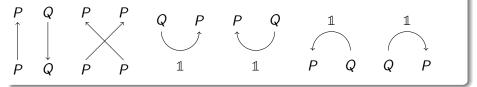
$(\mathfrak{h},+, imes,1)$		$(\mathcal{H},\oplus,\otimes,\mathbb{1})$
p,q	C	Objects: P,Q
qp = pq + 2	1 Ç	$QP \simeq PQ \oplus \mathbb{1}$
	p, q	<i>p</i> , <i>q</i> C

Morphisms?



	$(\mathfrak{h},+, imes,1)$		\rightarrow ($\mathcal{H}, \oplus, \otimes, \mathbb{1}$)
<u>Generators:</u>	p,q		Objects: P, Q
Relations:	qp = pq + 2	1	$QP \simeq PQ \oplus \mathbb{1}$

Morphisms?



$(\mathfrak{h},+, imes,1)$ ———	$\longrightarrow (\mathcal{H},\oplus,\otimes,\mathbb{1})$
Generators: P, q	Objects: P, Q
$\underline{Relations:} \qquad qp = pq + 1$	$\mathit{QP}\simeq \mathit{PQ}\oplus\mathbb{1}$

Morphisms?

The generating morphisms satisfy some relations, such as:

$$\left| \begin{array}{c} \\ \\ \\ \end{array} \right| = \left| \begin{array}{c} \\ \\ \end{array} \right|$$

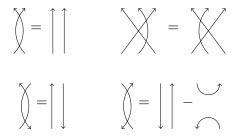
The generating morphisms satisfy some relations, such as:

$$\begin{array}{c} & & \\ & &$$

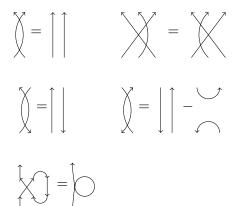
The generating morphisms satisfy some relations, such as:

$$\begin{split} & = & \uparrow \\ & = & \swarrow \\ & = & \downarrow \\ & &$$

The generating morphisms satisfy some relations, such as:

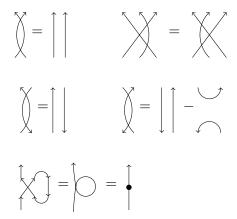


The generating morphisms satisfy some relations, such as:



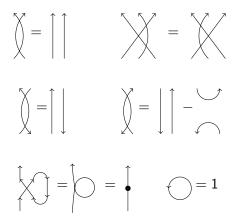
Morphism relations

The generating morphisms satisfy some relations, such as:

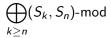


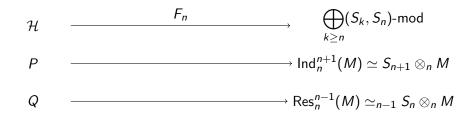
Morphism relations

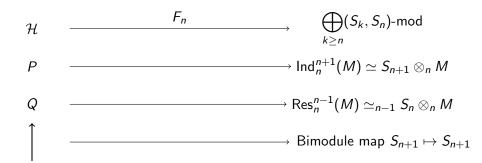
The generating morphisms satisfy some relations, such as:

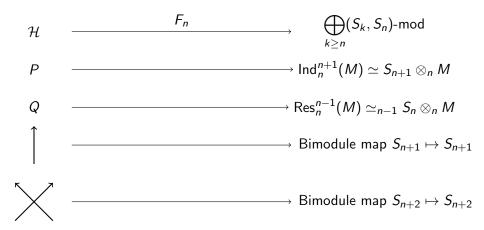


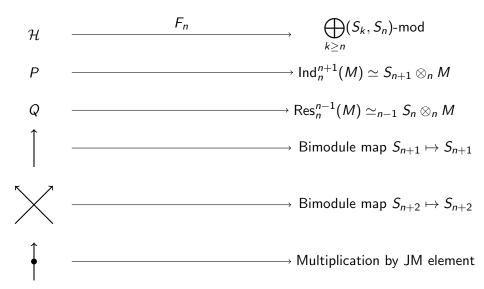
Outline



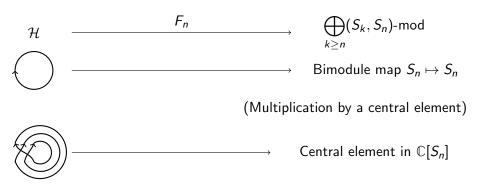


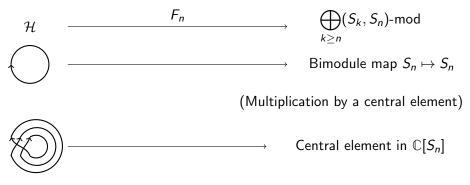




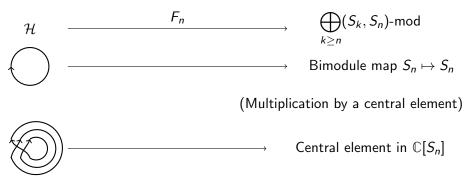


(Multiplication by a central element)





 $F_n(\operatorname{End}_{\mathcal{H}}(\mathbb{1})) \longmapsto Z(\mathbb{C}[S_n])$



 $F_n(\operatorname{End}_{\mathcal{H}}(\mathbb{1})) \longmapsto Z(\mathbb{C}[S_n])$

Question: These closed diagrams correspond to which central elements?

Indexed by partitions

Note that closure of a permutation only depends on the cycle type of the permutation. So these diagrams are indexed by partitions.

Indexed by partitions

Note that closure of a permutation only depends on the cycle type of the permutation. So these diagrams are indexed by partitions. There are two natural candidates for central elements indexed by partitions:

Indexed by partitions

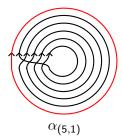
Note that closure of a permutation only depends on the cycle type of the permutation. So these diagrams are indexed by partitions. There are two natural candidates for central elements indexed by partitions:

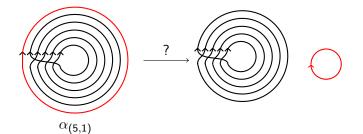
```
\begin{array}{c|c} \mbox{Conjugacy class sums } C_\lambda & \mbox{Central idempotents } e_\mu \\ & & & \\ & & & \\ & & & \\ \mbox{Power sum functions } p_\lambda & \mbox{Schur functions } s_\mu \end{array}
```

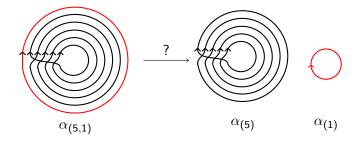
Indexed by partitions

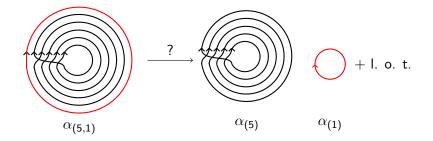
Note that closure of a permutation only depends on the cycle type of the permutation. So these diagrams are indexed by partitions. There are two natural candidates for central elements indexed by partitions:

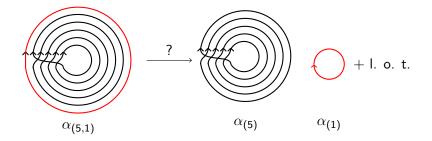
```
Conjugacy class sums C_{\lambda}Central idempotents e_{\mu}\downarrow\downarrowPower sum functions p_{\lambda}Schur functions s_{\mu}QuestionHow do we multiply these diagrams?
```











 $\mathfrak{p}_{(5,1)} = \mathfrak{p}_{(5)}\mathfrak{p}_{(1)} + \text{lower order terms}$

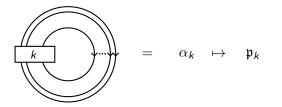
where $\{\mathfrak{p}_k\}$ is a non-homogeneous basis of $Sym = \Bbbk[p_1, p_2, ...]$

Center of \mathcal{H}_{tw}

Theorem ('16, Kvigne, Licata, Mitchell)

There is an algebra isomorphism

$$\mathsf{End}_{\mathcal{H}}(\mathbb{1})\simeq \mathit{Sym}^*=\Bbbk[\mathfrak{p}_1,\mathfrak{p}_2,\dots]$$

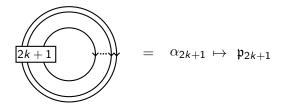


Center of \mathcal{H}_{tw}

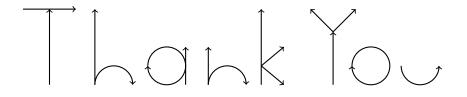
Theorem ('17, Kvigne, O., Reeks)

There is an algebra isomorphism

$$\mathsf{End}_{\mathcal{H}_{tw}}(\mathbb{1}) \simeq \Gamma = \Bbbk[\mathfrak{p}_1, \mathfrak{p}_3, \dots]$$



Center of ${\mathcal H}$



References I

Khovanov, M.,

Heisenberg algebra and a graphical calculus Fund. Math., vol 225, number 1, 2014

Kvinge, H.,Licata, A. M.,Mitchell, S.,

Khovanov's Heisenberg category, moments in free probability, and shifted symmetric functions arXiv:1610.04571, 2016

Kvinge, H., Oğuz, C.O., Reeks, M.,

The center of the twisted Heisenberg category, factorial Schur Q-functions, and transition functions on the Schur graph arXiv:1712.09626v2, 2018